//! Generic functional concepts implemented in Rust. //! Some choices are intentionally less generic due to specifics of the domain. //! That, for example, includes the almost exclusive focus on [`FnOnce`] category. //! //! Sources: //! * //! * //! * pub mod classes; pub mod clone_func; pub mod copy_func; pub mod derivations; #[cfg(test)] pub mod test_suite; #[cfg(test)] pub mod tests; /// Part of Haskell's `Functor f` responsible to use `f a`. /// /// pub trait WeakFunctor { type F<'a, A: 'a>: 'a where Self: 'a; } /// Rust-specific implementation of [`Functor`], respecting `move` semantics. /// /// Cannot insantiate for e.g. multi-element collections: /// ```compile_fail /// use radn_rs::func::*; /// /// struct VecClass; /// /// impl WeakFunctor for VecClass { /// type F<'a, A> = Vec; /// } /// /// impl Functor for VecClass { /// fn fmap<'a, A: 'a, B: 'a>(f: impl 'a + FnOnce(A) -> B, fa: Self::F<'a, A>) -> Self::F<'a, B> { /// fa.into_iter().map(f).collect() /// } /// } /// ``` /// Why does it fail to compile? `.map` expects `FnMut` (or we can think of it being `Fn`, doesn't matter here). But what we provide it (`f`) is /// /// For Haskell-style Functors, use [`clone_func::CloneFunctor`] instead. /// ``` /// use radn_rs::func::clone_func::*; /// /// struct VecClass; /// /// impl CloneWeakFunctor for VecClass { /// type ClF<'a, A: Clone> = Vec; /// } /// /// impl CloneFunctor for VecClass { /// fn clone_fmap<'a, A: 'a + Clone, B: 'a + Clone>( /// f: impl 'a + Fn(A) -> B, /// fa: Self::ClF<'a, A>, /// ) -> Self::ClF<'a, B> { /// fa.into_iter().map(f).collect() /// } /// } /// ``` /// /// pub trait Functor: WeakFunctor { /// Equivalent or Haskell's `fmap`. /// Due to Rust limitations, it's not a `function->function` conversion. /// For that see [`derivations::fmap`]. fn fmap<'a, A: 'a, B: 'a>(f: impl 'a + FnOnce(A) -> B, fa: Self::F<'a, A>) -> Self::F<'a, B> where Self: 'a; /// Equivalent of Haskell's `$>`/`<$`. fn replace<'a, A: 'a, B: 'a>(fa: Self::F<'a, A>, b: B) -> Self::F<'a, B> where Self: 'a, { Self::fmap(|_| b, fa) } /// Equivalent of Haskell's `void`. fn void<'a, A: 'a>(fa: Self::F<'a, A>) -> Self::F<'a, ()> where Self: 'a, { Self::replace(fa, ()) } } /// Part of [`Applicative`] responsible for Haskell's value lifting, `pure`. pub trait Pure: Functor { /// Equivalent of Haskell's `pure`/`return`. fn pure<'a, A: 'a>(a: A) -> Self::F<'a, A> where Self: 'a; } /// Part of [`Applicative`] responsible for Haskell's sequential application `<*>`. pub trait ApplicativeSeq: Functor { /// Equivalent of Haskell's `<*>`. fn seq<'a, A: 'a, B: 'a>( ff: Self::F<'a, impl 'a + FnOnce(A) -> B>, fa: Self::F<'a, A>, ) -> Self::F<'a, B> where Self: 'a; } /// Part of [`Applicative`] responsible for Haskell's result combination `listA2`. pub trait ApplicativeLA2: Functor { /// Equivalent of Haskell's `listA2`. fn la2<'a, A: 'a, B: 'a, C: 'a>( f: impl 'a + FnOnce(A, B) -> C, fa: Self::F<'a, A>, fb: Self::F<'a, B>, ) -> Self::F<'a, C> where Self: 'a; } /// Part of [`Applicative`] responsible for Rust-style result combination, specifically for tuples. pub trait ApplicativeTuple: Functor { /// Similar to Haskell's `listA2` but with [Iterator::collect]-ish semantics. fn tuple<'a, A: 'a, B: 'a>(fab: (Self::F<'a, A>, Self::F<'a, B>)) -> Self::F<'a, (A, B)> where Self: 'a; } /// Equivalent of Haskell's `Applicative`. /// Split into [`Pure`], [`ApplicativeSeq`], [`ApplicativeLA2`] and [`ApplicativeTuple`] due to Rust limitations. /// /// pub trait Applicative: Pure + ApplicativeSeq + ApplicativeLA2 + ApplicativeTuple { /// Equivalent of Haskell's `*>`/`>>`. fn discard_first<'a, A: 'a, B: 'a>(fa: Self::F<'a, A>, fb: Self::F<'a, B>) -> Self::F<'a, B> where Self: 'a, { Self::seq(Self::replace(fa, |b| b), fb) } /// Equivalent of Haskell's `<*`. fn discard_second<'a, A: 'a, B: 'a>(fa: Self::F<'a, A>, fb: Self::F<'a, B>) -> Self::F<'a, A> where Self: 'a, { Self::la2(|a, _| a, fa, fb) } } /// Represents iteration state. pub enum IState { /// Loop running. Pending(A), /// Loop finished. Done(B), } /// Equivalent of Haskell's `Monad`. /// /// pub trait Monad: Applicative { /// Equivalent of Haskell's `>==`. fn bind<'a, A: 'a, B: 'a>( fa: Self::F<'a, A>, f: impl 'a + FnOnce(A) -> Self::F<'a, B>, ) -> Self::F<'a, B> where Self: 'a; /// Kleisli category composition special case used to represent loops. /// Included for optimisation and clarity. /// Generally, [`Monad::bind`] should be enough implement it. /// See [`classes::stackless::StacklessClass::ibind`] for a generic, though less-than ideal, blanket implementation. /// On practice, you shouldn't be using [`Monad::bind`]/[`Pure::pure`]/[`Functor::fmap`] here. fn ibind<'a, A: 'a, B: 'a>( a: A, f: impl 'a + FnMut(A) -> Self::F<'a, IState>, ) -> Self::F<'a, B> where Self: 'a; /// Equivalent of Haskell's `join`. fn join<'a, A: 'a>(ffa: Self::F<'a, Self::F<'a, A>>) -> Self::F<'a, A> where Self::F<'a, A>: 'a, Self: 'a, { Self::bind(ffa, |fa| fa) } } /// Equivalent of Haskell's `MonadFail`. /// /// pub trait MonadFail: Monad { /// Equivalent of Haskell's `fail`. fn fail<'a, A: 'a>(e: E) -> Self::F<'a, A> where Self: 'a; } /// Equivalent of Haskell's `Alternative`. /// Lacks `some`/`many` definitions due to [`FnOnce`] category semantics. /// /// pub trait Alternative: Applicative { /// Equivalent of Haskell's `empty`. fn empty<'a, A: 'a>() -> Self::F<'a, A> where Self: 'a; /// Equivalent of Haskell's `<|>`. fn add<'a, A: 'a>(fa: Self::F<'a, A>, fb: Self::F<'a, A>) -> Self::F<'a, A> where Self: 'a; } /// Represents wrapped results which are instantly available. pub trait LocalFunctor: WeakFunctor { /// Extract iteration state, if successful. fn unstuff<'a, A: 'a, B: 'a>(state: Self::F<'a, IState>) -> IState> where Self: 'a; /// Stuff wrapped result into another functor. fn stuff<'a, A: 'a, T: 'a + Pure>(fa: Self::F<'a, T::F<'a, A>>) -> T::F<'a, Self::F<'a, A>> where Self: 'a; }