//! Implementation of [`Monad`] for [`Option`].
//!
//! If any of the input values are [`None`], you can expect the output to be [`None`] as well.
//! That includes
//! [`OptionInstance::replace`] and [`OptionInstance::discard_first`]/[`OptionInstance::discard_second`],
//! even if the value of the option would be ignored.
//!
//! For [`Result`] alternative see [`result`].
//!
//! For values that are never [`None`], see [`solo`].
//!
//! [`result`]: super::result
//! [`solo`]: super::solo
use crate::func::class_prelude::*;
#[derive(SharedFunctorAny)]
pub struct OptionInstance;
impl WeakFunctorAny for OptionInstance {
type FAny<'a, A: 'a> = Option;
}
impl<'a> Functor<'a> for OptionInstance {
fn fmap(fa: Self::F, f: impl 'a + FnOnce(A) -> B) -> Self::F {
fa.map(f)
}
fn replace(fa: Self::F, b: B) -> Self::F {
fa?;
Self::pure(b)
}
fn void(fa: Self::F) -> Self::F<()> {
fa?;
Self::pure(())
}
}
impl<'a> Pure<'a> for OptionInstance {
fn pure(a: A) -> Self::F {
Some(a)
}
}
impl<'a> ApplicativeSeq<'a> for OptionInstance {
fn seq(ff: Self::F B>, fa: Self::F) -> Self::F {
Self::pure(ff?(fa?))
}
}
impl<'a> ApplicativeLA2<'a> for OptionInstance {
fn la2(
fa: Self::F,
fb: Self::F,
f: impl 'a + FnOnce(A, B) -> C,
) -> Self::F {
Self::pure(f(fa?, fb?))
}
}
impl<'a> ApplicativeTuple<'a> for OptionInstance {
fn tuple((fa, fb): (Self::F, Self::F)) -> Self::F<(A, B)> {
Self::pure((fa?, fb?))
}
}
impl<'a> ApplicativeSelect<'a> for OptionInstance {}
impl<'a> Applicative<'a> for OptionInstance {
fn discard_first(fa: Self::F, fb: Self::F) -> Self::F {
fa?;
fb
}
fn discard_second(fa: Self::F, fb: Self::F) -> Self::F {
fb?;
fa
}
}
impl<'a> Monad<'a> for OptionInstance {
fn bind(fa: Self::F, f: impl 'a + FnOnce(A) -> Self::F) -> Self::F {
f(fa?)
}
fn iterate(mut f: impl Iterative<'a, T = Self, B = B>) -> Self::F {
loop {
match f.next()? {
ControlFlow::Continue(next_f) => f = next_f,
ControlFlow::Break(b) => return Self::pure(b),
}
}
}
fn join(ffa: Self::F>) -> Self::F {
ffa?
}
}
impl<'a> LocalFunctor<'a> for OptionInstance {
fn unstuff(state: Self::F>) -> ControlFlow, A> {
match state {
Some(ControlFlow::Continue(a)) => ControlFlow::Continue(a),
Some(ControlFlow::Break(b)) => ControlFlow::Break(Some(b)),
None => ControlFlow::Break(None),
}
}
fn stuff>(fa: Self::F>) -> T::F> {
match fa {
Some(ua) => T::fmap(ua, Some),
None => T::pure(None),
}
}
}
impl<'a> Fail<'a, ()> for OptionInstance {
fn fail(_e: ()) -> Self::F {
None
}
}
#[cfg(test)]
mod option_tests {
use super::{test_suite, tests, Functor};
use super::OptionInstance as T;
impl<'a> tests::Eqr<'a> for T {
fn eqr(
name: &'a str,
left: Self::F,
right: Self::F,
) -> tests::R {
tests::eqr(name, left, right)
}
}
impl<'a> test_suite::FunctorTestSuite<'a> for T {
fn sample Self::F)>(mut f: F) {
f(&|_| None);
f(&|a| Some(a));
}
}
#[test]
fn fmap_f_none_is_none() {
assert_eq!(T::fmap(None, |_: ()| ()), None);
}
#[test]
fn fmap_f_some_a_is_some_f_a() {
assert_eq!(T::fmap(Some(2), |x| x * x), Some(4));
}
#[test]
fn replace_none_b_is_none() {
assert_eq!(T::replace(None::, 1), None);
assert_eq!(T::void(None::), None);
}
#[test]
fn replace_some_a_b_is_some_b() {
assert_eq!(T::replace(Some(1), 2), Some(2));
assert_eq!(T::void(Some(1)), Some(()));
}
#[test]
fn monad_follows_laws() {
test_suite::monad_follows_laws::().unwrap();
}
}